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Abstract

The National Aeronautics and Space Administration (NASA) has implemented the

Advanced Air Transportation Technology (AATT) program to investigate future

improvements to the national and international air traffic management systems.

This research, as part of the AATT program, developed preliminary design

requirements for an advanced Airline Operations Control (AOC) dispatcher's

workstation, with emphasis on flight planning. This design will support the

implementation of an experimental workstation in NASA laboratories that would

emulate AOC dispatch operations.

The work developed an airline flight plan data base and specified requirements for:

a computer tool for generation and evaluation of free flight, user preferred

trajectories (UPT); the kernel of an advanced flight planning system to be

incorporated into the UPT-generation tool; and an AOC workstation to house the

UPT-generation tool and to provide a real-time testing environment.

A prototype for the advanced flight plan optimization kernel was developed and

demonstrated. The flight planner uses dynamic programming to search a four-

dimensional wind and temperature grid to identify the optimal route, altitude and

speed for successive segments of a flight. An iterative process is employed in which

a series of trajectories are successively refined until the UPT is identified. The flight

planner is designed to function in the current operational environment as well as

in free flight. The free flight environment would enable greater flexibility in UPT

selection based on alleviation of current procedural constraints. The prototype also

takes advantage of advanced computer processing capabilities to implement more

powerful optimization routines than would be possible with older computer

systems.
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1. Introduction

This report describes the results of research performed as part of the National

Aeronautics and Space Administration (NASA) Advanced Air Transportation

Technology (AATT) program. This work investigates means by which dispatch

operations of Airline Operations Control (AOC) facilities could support free flight

concepts. The free flight concept promotes government and industry collaboration

in the use of advanced technologies and procedural initiatives to improve air traffic

system efficiency [1,2].

The objective of this research is the first step in the specification of a software

component for an experimental advanced workstation for use in NASA laboratories

that would emulate AOC dispatch operations. The advanced workstation would

facilitate development and utilization of a user preferred trajectory (UPT) by each

flight. The free flight UPTs would improve flight efficiency by taking advantage of

the removal or relaxation of constraints imposed in current air traffic operations.

Such constraints range from current procedural requirements which restrict airspace

utilization flexibility, including restrictions to allowable routes and altitudes, to data

processing limitations of current AOC automation, which may not be capable of

fully implementing more-flexible procedures and trajectories.

1.1 AOC Dispatch Operation

The dispatcher's work functions may be distinguished according to pre-departure

and post-departure flight phases:

• Flight planning

• Flight following and in-flight replanning

Flight planning focuses on the development of the preferred route, speed, and

altitude profile for a flight in accordance with an optimization objective, such as

minimizing fuel burn, flight time, or a combination of both, subject to schedule,

aircraft weight limits and other requirements. Flight following involves monitoring

the progress of a flight with respect to the flight plan, schedule, and safety and

efficiency factors, and responding to contingencies and irregularities, which often

relate to disruptions due to severe weather.

As shown in Figure 1, the flight planning and following functions require the

dispatcher to interact with an extensive information exchange system. The system

includes computer processing of static and dynamically updated databases,

computerized data input and display interfaces, hard copy documents, and voice and

data link communications. The dispatcher workstation accommodates these

capabilities.
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Figure 1. High level dispatch functions and data bases

Selected data processing requirements of the flight planning function are shown in

further detail in Figure 2. As presented in reference [3], preparation for flight

planning and preparation of the flight plan for release require the dispatcher to

assemble, review, analyze, operate on, communicate, coordinate and confirm data

concerning:

• Weather and field conditions at departure and arrival stations and alternate

airport candidates for en route use;

• Airport and navigation aid system status, including terminal, runway, landing

guidance, and navigation aid conditions;

• Aircraft limitations, including minimum equipment list (MEL), fuel load, take-

off weight and landing weight constraints;

• Appropriate flight plan optimization objective in consideration of schedule, air

traffic control, weather, navigation system, and safety factors;

• Fuel load, route, altitude profile, and airspeed calculations;

• Distribution of flight plan release data, including dissemination of fuel load data

to the fueler, maximum payload data to load planning, and flight plan data to the

pilot and air traffic control; and

• Finalization of the flight release with the pilot, pertinent company offices, and
air traffic control authorities.
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Figure 2. Flight planning: Representative data interfaces

Figure 3 shows further details of selected data processing requirements of the flight
following function. Flight following requires the dispatcher to assemble, review,

analyze, operate on, communicate, coordinate and confirm data concerning [3]:

Monitoring of critical event times, including terminal gate pushback, wheels up,
en route position reports, expected further clearances in the case of holding or
deviations, touchdown, and gate arrival;

Monitoring the condition of a flight with respect to the flight plan, including
review of fuel reports for gate departure, takeoff, en route position reporting,

hold entry, top of descent, and arrival events, recalculation of fuel requirements

due to route or altitude deviations, and replanning for changing wind,

turbulence, icing and other contingencies;

• Distribution of information that might affect flight safety or invalidate the flight
release;

Interaction with ATM automation for en route replanning, change in
destination, and arrival scheduling;

Interaction with flight deck/pilot for status reports and updating of flight plan
and weather information; and



• Establishing closure on revisions to the flight plan with the pilot, pertinent

company offices, and air traffic control authorities.
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Figure 3. Flight following: representative data interfaces

1.2 AOC System Specification

Figure 4 illustrates the central importance of the flight planning kernel to the

overall AOC dispatch operation. As a consequence, this research effort emphasizes

initial design of the flight planning function in initiating the specification of

software for an advanced AOC workstation. Accordingly, the research has

emphasized developing a prototype kernel for an advanced flight plan optimization
tool.

As suggested in Figs. 1-4, many other components exist as part of the AOC

workstation. These must be specified to enable subsequent design of a

comprehensive AOC workstation simulator to support real time research with the

dispatcher in the loop. This then is the second emphasis of this work - to describe

the various functional components of the AOC workstation to meet free flight
needs.

The remainder of this report consists of three additional sections and two

appendices:

• Overview of the AOC workstation functional specifications;

• Flight planner kernel description; and



• Recommendations for continued workstation development to support NASA

free flight research.

The flight planner section describes our newly-developed prototype for an advanced

flight planner. More details concerning its design are presented in Appendices A
and B.

The recommendations address additional tasks needed and software data

requirements for further developing an advanced AOC workstation simulation to

support NASA free flight laboratory experimentation. The workstation software

would incorporate flight planning, flight following, communications with ATM

and flight deck, data base management and other AOC automation functions.
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2. Flight Plan Database and AOC Workstation Specifications

We conducted a one-year effort to develop an airline flight plan data base and to

specify the requirements for (a) a computer tool for generation and evaluation of

free flight, user preferred trajectories (UPT); (b) an advanced flight planning system

(FPS) to be incorporated into the UPT-generation tool, and (c) an AOC workstation

to house the UPT-generation tool and to provide a real-time testing environment.

This AOC workstation will enable including the dispatcher in subsequent real-time

free flight experiments at NASA. This work consisted of four tasks which are now

summarized. Subsequent work needed to implement these requirements is
summarized in Section 4.

2.1 Free Flight Trajectory Data Base

The purpose of this task was to begin to develop a data base of UPTs, sub-optimal

flight plans, and the associated data that characterize aircraft type performance and

prevailing weather conditions on the days the flight plans are generated. These data

were developed at American Airlines using their existing flight planning

capabilities. They contain all the operational factors that affect the definition of a

UPT for any given day, such as:

1. Flight identification

2. Origin and destination airports and alternative destinations

3. Aircraft Type

4. Planned fuel burn

5. Planned reserve fuel, alternative airport fuel, contingency fuel, hold fuel, added

discretionary fuel and ferry fuel load

6. Planned payload, takeoff weight and landing weight

7. Planned flight route and performance by flight segment:

• Segment end point names (including top of climb, bottom of descent),

latitude and longitude

• Wind vector, temperature, tropopause height and turbulence indicator

• Flight level

• Flight course and heading

• Mach number, true air speed and ground speed

• Distance

• Flight time

• Fuel burn

8. Aircraft weight and payload at departure gate

7



9. Scheduled gate departure time

10. Taxi-out and Taxi-in time and fuel burn

This data base has the following purposes:

1. These trajectories and the accompanying flight data (weather field, aircraft types)

can be used as realistic flight plan input to a flight simulation program such as

TAAM for the subsequent study of the interaction of UPTs.

2. The trajectories can be used as models for the desired output of the UPT-

generation kernel that was specified and designed under Tasks 2 and 3. That is,

the flight plan generation process can be tuned to produce the same trajectories

under the same operational conditions.

3. The trajectories can be used to quantify the value, or benefit, of different levels of

flight plan optimization (e.g., constrained en route flight levels vs. cruise-climb)

as operations evolve to the free flight environment.

We collected a complete set of American Airlines' flight plans for four days of

operation. Days included the following:

1. A normal summer day with light winds;

2. A day with severe thunder storm disruption;

3. A winter day with strong west-east jet stream activity; and

4. A winter day with snow storm disruption.

The set of over 10,000 flight plans generated with today's operational constraints
serve as the baseline set.

A second smaller set was generated to represent the ideal, or UPT flight plans for

these four sample days.

Ta_k 1 D¢liv¢rabl¢: The product of this task was the beginning of a flight plan data
base that is accessible on a Unix workstation. This data base was delivered to NASA.

2.2 User Preferred Trajectory Generation Specifications

In this task, Seagull worked with the American Dispatchers Federation (ADF),

American Airlines (AAL), Delta Airlines (DAL) and NASA and reviewed revenant

documentation [4,5,6,7,8] to develop the specifications for a tool to generate and

analyze UPTs between any US city pairs. This future computer tool could be used by
NASA to:

1. Define collections of UPTs for any given weather condition to extend the

database created in Task 1. These data could be used for subsequent free flight

analysis by input to TAAM or other suitable flight analysis program.

2. Analyze individual UPTs in terms of fuel burn, time, and direct operating cost

(DOC) savings relative to more restricted (less optimal) flight plans.



3. Generate UPT flight plans on a real-time basis as part of a dispatcher workstation

simulation that emulates the dispatcher environment and his/her role relative

to the pilot and air traffic manager.

Seagull worked closely with American Dispatchers Federation and American

Airlines to define UPT-generation tool requirements from the airline operations

perspective. UPT-generation is encompassed in the flight planning process; this

_rocess uses input from several sources as depicted in the Figure 5 sketch.
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Figure 5. Elements of the flight planning process

Elements of this process that are included in the UPT-generation tool specifications

are data bases defining the following:

1. The collection of city pairs that are to be serviced. This includes any airspace

constraints affecting flight between these city pairs.

The flight schedule that serves these city pairs. Included are the schedule

structure of banks of incoming and outgoing aircraft from a large hub operation.

This includes the connection priorities of the flights at their various
destinations.

Data representing the types of aircraft assigned to the schedule. Each type is

specified by aerodynamic and propulsion performance characteristics, weight and

flight envelope constraints, and passenger/payload data that affect schedule

priority.

.

.



4. Data representing a spectrum of weather days including summer convective
weather and winter snow storm conditions. Also included are the associated

wind and temperature fields and movement of jet stream. These data represent

the operational scenarios for normal and weather-impacted (irregular operation)
days.

5. Data representing other flights (city pairs, schedules, flight profiles) that compete

for the same airspace and runway occupancy.

6. Parameters that affect the flight cost that are used to optimize the flight plan. Cost

of flight time (including maintenance, crew and depreciation costs), cost of fuel

(per airport), and requirement for controlled time-of-arrival are included.

Other input requirements are:

1. Other input that dispatchers and AOC personnel use during the course of their

decision making relative to the operation of their flights.

2. The requirements for interface with the aircraft/FMS/pilot and the ATM

automation system/air traffic controller/manager. This includes input of data

that affects creation of the flight plans and output of data that distributes the

flight plan and other information useful to aircraft and ATM automation for

facilitating free flight.

3. The options required by the dispatcher for optimizing the flight profile in the

process of creating the flight plan that defines the UPT. Options include

optimizing fuel load, altitude, speed, horizontal path, time of flight, and their

various combinations. This is explained more fully in the next subsection.

ADF dispatchers were polled to expand the details of these specification elements.

We defined information and computation facility required to generate flight plans

that are both responsive to the UPT requirement and the ease of their generation.

AAL and DAL AOC managers were polled to determine that all considerations from

their operational control perspective are addressed.

Ta_k 2 D¢liverabl_: The product of this task is the preliminary specification for a

UPT-generation tool presented in Appendix A. The specification is an engineering

design document that was used to guide the subsequent flight planning kernel

software design. The requirements includes provisions to meet the need to preserve

the airline flight schedule as well as to optimize the individual flight profiles.

2.3 Optimized Flight Planning Process

In this task, we expanded the specification of the UPT-generation tool to define the

details of an advanced flight planning (FP) process. This task expanded the

Appendix A specification by creation of a flight planning kernel. Examples of its

operation are presented in Section 3. The current FP software design details are

documented in Appendix B.

The FP kernel design creates provision for several computational options that can

be set to meet particular flight requirements of the UPT. The FP process is structured
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so that it calls this primary inner kernel to generate the reference altitude and speed
profile, route (the "flight path"), and fuel burn schedule. These are used, in turn, to
produce the flight planning output table and dispatch release information.

The FP path generation process is divided into a series of computation steps grouped
into modules that are called by the AOC workstation executive. The executive brings
in the appropriate data, makes the appropriate computations, and provide the
required output for various user requirements. The computational sequence
consists of a series of hierarchical steps and options set by the dispatcher's choices
and the demands of the FP needed to connect the city pair. Each of these steps is to be
implemented as a separate module with well defined functionality and user
interfaces.

The FP logic is organized so that the user will be able to test and compare the
outcome of using the various options. This will enable comparison to determine (a)
the quantitative benefit that a more complex UPT has in terms of saved fuel or
direct operating cost (DOC), and (b) the computational penalty (time, memory, etc.),
if any, that the implementation of the more advanced method could have on the
overall flight planning process.

Some airline routes are pre-defined as a single path between the city pair. Other city
pairs have the intermediate options of defining what is the best route (horizontal
path) that connects the two given airports based upon the wind conditions, type of
aircraft, payload, and route constraints that apply.

The following discusses some of the options that are included in the flight planning
process.

Single Fixed Rqut¢. For a single fixed route, there is a hierarchy of computation

options depending upon the constraints involved:

a. Fixed cruise altitude and speed. These profiles occur when air traffic control and

the volume of other flight are such that only very constrained flight profiles can

be used. For example, the flight speed and altitude are fixed when flying on one

of the North Atlantic Track (NAT) paths. For constrained cruise altitude and

cruise speed, there is no option to optimize. However, the FP computation

provides the accurate fuel burn requirement and the optimum top-of-descent

(TOD) point.

b. Fixed ¢rui_e speed; free cruise altitude. Here, the cruise speed is predetermined to

be some fixed or scheduled value such as long range cruise speed, maximum

speed, or some speed schedule possibly determined by airline fuel policy. A

minimum time flight plan is computed using the maximum allowed cruise

speed. The optimization process determines the best cruise altitude, where the

optimum step climb or step descent points are between multiple cruise altitudes,

and the accurate fuel load and TOD point. "Dynamic programming" is the

technique that is used to determine the optimum altitude profile.

c. Fixed cruise altitude; free cruise speed. Air traffic control can constrain the

altitude level that the aircraft can fly along but leave the cruise speed free. In this

ll



case, the optimization process determines the best speed to minimize overall

fuel burn or DOC. Speed will change from segment to segment as the wind

vector changes along the route. A local speed optimization method is used to

find the best cruise speed along any given segment. "Segment" is used here to

represent a section of the cruise path between consecutive waypoints but no

longer than some fixed length such as 100 nmi.

d. Free cruise altitude and cruise _p_d. Here, the FPS computation finds the best

flight levels, step climb/descent points, speed along the segments, TOD point,

and fuel load as a combined optimization process. The optimization process

combines the dynamic programming and segment speed optimization

techniques to find the overall best profile.

Multiple Routes. Several levels of sophistication are made available for selection of

the 3D optimal flight plan route. The dynamic programming search process

determines the best path as is discussed in Section 3. The multiple route options
include:

a. Multiple single path routes. Here, several single fixed routes are pre-defined by

the AOC that serve as possible paths to transition between the given city pair.

The FP generates an optimal trajectory for each of these paths and then rank

orders the possibilities in terms of flight cost. Sometimes a non-optimal path

might be preferred because it can avoid regions of turbulence or heavy traffic. If

five or more possible paths exist, the search begins with the middle path and

works outward so that the search does not have to continue search over paths

with unfavorable winds. Also, the dispatcher has the option to eliminate some

of the paths graphically from the set by examining the overlying wind field and

other constraints. In addition, the multiple routes may have several segments in

common. The logic is structured so that it does not duplicate computing the

flight plan portion over the common segments.

b. Constrained random routes. "Constrained" means that the routes have been

defined by an array of pre-defined navigation aid locations, jet or victor route

segments, oceanic checkpoints, SIDs or STARs. This array has some geometric

boundary used to limit the search, and it is defined by the location of the city pair.

This boundary can be thought of as having an elliptical shape with its major axis

being the great circle are connecting the city pair. The further apart the city pair,

the larger the lateral boundary of the array. The dispatcher has the option of

eliminating certain waypoints, segments of routes or airspace within the array to

confine the search. The search process has the further option of (a) being

constrained to a search over a fixed altitude, or (b) being a full 3D search where

the route and profile are determined simultaneously. Option (a) separates the

horizontal route search from the vertical profile search. It has a computational

speed advantage but often misses finding the true optimal 3D path. However, it

is retained as an option to full 3D planning.

Unconstrained random routes. "Unconstrained" means that the waypoints that

define the route have not been pre-defined but are computed as part of the 3D

route search process. These can be considered full free flight trajectories[4]. A

C°
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great circle arc is defined to connect the city pair. Elliptical arcs are defined on
either side of the center arc such that the distance between the arcs at the

midpoint is a specific fraction of the center arc length. Four or more arcs on

either side of the center arc (for a total of at least nine elliptical arcs) define the

trial paths. Evenly spaced nodes (e.g., at every 50 nmi) are define along the arcs.

These nodes define the trial waypoints. These nodes are further specified at 3 or

more flight levels to define the 3D grid field for the search. The number of flight

levels and their altitudes are a function of the total range of flight. Again, the

dispatcher may eliminate regions of this grid network to limit the search. After

the search has found the best path through the initial field of node points, a new

set of nodes is defined about this path with the lateral boundary limited to the

original distance between two adjacent elliptical arc lines. The search is repeated

to refine the path. Then, a third set of nodes is defined about the second path

with the lateral boundary further limited by the distance between adjacent lines

in the second field. The search is again repeated, and this process is continually

refined until the 3D path is defined that takes advantage of a finer mesh wind
field forecast.

d. Combination routes. Some of the routes may have combinations of the previous

options with portions that are fixed to either a single route segment, multiple

non-overlapping paths (e.g., the NAT structure, SIDs), a web of overlapping

route segments (e.g., the Pacific flex-track system), or constrained random routing

(e.g., Miami to Madrid). The flight planning process is designed to sort out this

search process to customize the plan to the appropriate constraints that apply. As

unconstrained UPT becomes possible, this capability will also be blended in.

Cruise Altitude Optimization. Cruise altitude is optimized with two options: today's
flight level constraints and cruise climb.

a. Constrained flight levels. Today's flight level constraints vary over the world's

airspace. The constraints may be timed, such as for European flow control or for

the NAT entrance; they may be regionally defined such as the US hemispherical

rule, and they may have metric units. The FP process determines the optimum

altitudes for the different segments of flight and the points where step climbs and
descents should be made.

b. Cruise-climb. The other option is to use cruise-climbs for following the best wind

profile as fuel is burned. This type of vertical profile is continuously changing in

altitude, and it is analogous to the unconstrained random route in the

horizontal plane.

Climb and Descent Optimization. Two options are available from which to compute

the climb and descent portions of the FP. The accuracy gained here helps define

more precisely the fuel burn requirement. The climb/descent profiles can be

included in the optimization process. Options include a basic profile computation

and climb-descent speed optimization.

a. Basic profile computation. The basic design integrates the climb and descent

equations of motion of the aircraft using point mass assumptions and the drag

13



polars and thrust-fuel flow performance models of each aircraft. This method

has been perfected [4] during previous flight management, flight planning, and

traffic management system designs. The climb profile is based on using

maximum climb thrust and typical airline specified climb speed (Mach-CAS

schedule) profile for the particular aircraft type. The descent profile is based on

using idle or partial thrust with the airline descent speed schedule. The speed

schedules can either be fixed for a given aircraft type or they can be set by the

dispatcher.

This method has several advantages over the table lookup method used by

current airline flight planning tools:

(a) It accurately accounts for the wind profile at each altitude during climb or

descent including effects of turns in the approach or departure route. This is

essential to compute an accurate top of descent;

(b) It can take into account local ATC procedures such as stepping up or down to

fixed altitude levels during climb/descent, passing over feeder fixes at fixed

altitude and speed (e.g., 250 kt at 12000 ft), etc.; and

(c) It provides the option of changing the climb or descent speed schedule and

determining the overall effect on the FP time and fuel requirements.

b. Climb-descent speed optimization. This option allows the dispatcher to optimize

the climb or descent profile by choice of the speed schedule followed during the

profile. Two methods are available - Mach/CAS speed parameter optimization

and energy state optimization [4]. This allows a finely tuned flight plan to more

nearly resemble the profile that would be generated by a flight management

system.

Additional Optimization Option_. The 2D or 3D flight plans are designed so that

some overall cost parameter can be optimized. If minimum time is desired, then the

flight profile and route are selected to minimize flight time between the city pair by

flying at the maximum speed possible. If fuel burn is to be minimized, then the

flight segment sequence is chosen to provide overall minimum fuel. If minimum

DOC is desired, then a "cost function" consisting of the sum of fuel multiplied by

fuel cost plus time multiplied by cost-of-time is minimized.

For a hub operation, it is often advantageous to determine the minimum fuel flight

plan that also achieves a required time-of-arrival (RTA). This is done by

minimizing the DOC cost function with fuel cost fixed and the time cost variable.

For this case, the search process is extended to search on the time cost parameter (in

this case, an artifact of the optimization process) that drives the flight time to meet
the desired schedule.

Takeoff or Landing Weight Constraints. The flight plan profile is constrained by

both takeoff and landing weight constraints. For various reasons, the computation

of this profile may need to be done in both forward and backward time.

In one case, the landing weight (including dry aircraft weight, payload, and

reserve/alternate fuel requirements) are specified. Then, the flight plan is computed
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in backwards time starting with this landing weight to determine what fuel load is
required for this flight. This produces a required takeoff weight. If this takeoff weight
exceedsmaximum takeoff weight, then the payload must be limited so that the
takeoff limit is met. For this situation, the flight plan must be recomputed in
forward time beginning with the maximum takeoff weight.

In another case, the takeoff weight is specified to be maximum so that maximum
payload can be carried. The objective is to determine how much fuel is required to
carry this initial weight so that the initial fraction of fuel and payload can be
specified. This requires first computing the flight plan in forward time. The
resulting landing weight must be checked to see that the landing limit is not
exceeded. If it is, then the flight plan must be recomputed in backward time to
establish what the maximum takeoff weight can be to achieve this landing limit.

Time of Arrival Iteration. As mentioned before, the technique that is used to
minimize fuel and simultaneously fix time-of-arrival is to fix the fuel cost and to
iterate computationally on the time cost in the optimization cost function for the
given city pair. This is done by the executive repeatedly calling the inner reference
path generation routine while iterating on time cost until convergence on RTA is
achieved. This iteration is straight forward for the single fixed route casedescribed
earlier. For the multiple route or random route cases,it requires an extensive
amount of computation so that considerable care must be taken in the code design
to constrain the computation time to within a reasonable limit.

Random Routing Iteration. As described earlier, the search for the unconstrained

random route requires a series of searches through a series of increasingly finer

mesh arrays of nodal points. The FP executive computes the points in each nodal

array before calling the 3D FP computation to optimize the path through this array.

This iteration is repeated until convergence onto the optimal path is reached.

En Route Refile Analysis. The ability to re-compute the flight plan from any point

along the flight profile is provided. This capability is used to re-compute the plan if a

weather disruption, or bust, is experienced to determine if an alternate destination,

refueling stop, or alternate remaining route is required. This application is also used

to compute the point of re-dispatch for refiling to limit the reserve fuel

requirements. Another application is to use this capability to determine the

alternate flight plan in case of degraded engine performance. This includes the

engine-out drift down phase if required.

Task 3 Deliverable: The product of this task is the software design for an advanced

flight planning kernel that is the heart of the UPT-generation tool. This is described

further in Section 3 and Appendices A and B.
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2.4 Advanced Dispatchers' (AOC) Workstation

The final task was the development of plans to create an AOC workstation that can

be used by NASA as part of future real-time simulations of the free flight

environment. The AOC workstation serves to provide the dispatcher environment

just as NASA uses cockpit and ATC controller plan view display (PVD) simulators

today. This workstation is to be hosted on a Unix machine of NASA's choice. It will

contain the UPT-generation tool and advanced flight planning capability described

in Tasks 2 and 3. It will also contain provision for the dispatcher to interact with the

air traffic controller/manager and ATM decision support tools such as the Center-

TRACON Automation System (CTAS).

The AOC workstation also serves two other primary functions that will be required

in NASA real-time simulations of the future free flight environment. These are:

1. The communication hub that connects the dispatcher directly to

(a) the aircraft flight management system (FMS)/data link interface;

(b) the ATM traffic management unit;

(c) internal airline data sources such as passenger reservations and aircraft

performance records; and

(d) other external sources of data such as the National Weather Service.

2. The flight following capability that the dispatcher uses to track the flight and

interact with the pilot and ATM after takeoff.

Figure 6 is a sketch of the AOC workstation data flow from systems that were

developed for the Oceanic Development Facility (ODF) and the Human Factors

Laboratory (HFL) at FAA Technical Center (FAATC) [7]. These workstations are

being used in real-time experiments by the FAA as part of developing the Oceanic

ATM Automation System. The ODF workstation is on an HP machine, and the HFL

workstation is on a Sun machine. The dispatcher interface from these designs will

be adapted to NASA's needs to address US domestic flight.

As part of this task, we questioned several dispatchers at both AAL and DAL to learn

what features they deemed important or would like to have as part of an AOC

workstation of the future. As of the time of our visits to the AOCs (Winter 1995-6),

the airlines were involved in continuing upgrades to the tools available to their

dispatchers. The dispatchers commented that the tools they had were much better

than what had been available in years past, and that these tools had dramatically

improved the quality of the job that they were able to do.

Typical of the tools that AOC dispatchers now have at each individual workstation

are the following.

• Graphical displays of traffic using the aircraft situation display (ASD) feed

• Separate graphical displays of weather

• A text command window for flight plan generation
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• A text window for weather reports and forecasts

• Paper printouts of flights to be planned on their shift, on which the dispatchers
make notes

• Printed or electronic messages regarding status of airline operations

• A telephone/radio switchboard
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Figure 6. High level AOC workstation data flow

Among the capabilities most frequently mentioned as desirable next steps by the

dispatchers (as of Spring of 1996) were the following.

Graphical overlay of entire planned flight routes for selected flights on the ASD

display (in addition to the current aircraft location the ASD provides)

Selectable overlay of weather (particularly radar weather data) on the ASD

display

Selectable overlay of navigation aids and jet routes on ASD display

Ability to build routes manually without lots of keystrokes (e.g. with graphical

route-building capability)

Ability to make specific adjustments to computer-generated flight plan with

display of re-route impact on fuel and time

Ability to point, click and drag graphical route depiction to alter the computer-

generated flight plan route
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• Ability to point and click on aircraft to display ASD data (particularly time en-
route and fuel burned so far)

• Convenient flight replanning from arbitrary location to arbitrary destination

• Automatic updates of cargo and passenger loads for the flight from other

cooperating airline databases directly into flight planning system

• Ability to choose from a list of flights rather than keying flight numbers in to

start flight planning process

In addition, we discussed with NASA personnel the idea of using the AOC

workstation to enable the dispatcher to interact with and affect the terminal

approach scheduling process now implemented in the CTAS Traffic Management

Advisor (TMA) logic. The TMA logic currently schedules approach traffic based on a

first come-first served scheme. The AOC dispatcher would often prefer a different

approach schedule that favors certain higher priority flights. These might include

flights that are running late, flights with more critical connections, or flights with
greater payload.

Provision is being made to place a CTAS TMA workstation in the AAL AOC to

allow dispatchers to become familiar with the current scheduling process. A feature

of the advanced AOC workstation will be to allow the dispatcher to change this

schedule according to certain limits and constraints. This will be the subject of early
experiments with the AOC workstation in the NASA AATT real time simulation

facility.

Task 4 D_liverabl¢: There have been two products that resulted from this task. The

first is an the UPT-generation tool preliminary software data specification to

incorporate the AOC workstation to represent the functions of a typical US major

carrier operation. The second is development of recommendations for future

creation for NASA of the advanced flight planner, the UPT-generation tool, and the

AOC workstation, with features summarized previously. These are presented in
Section 4.
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3. Flight Planner Kernel

The prototype for an advanced flight plan optimization kernel has been designed to

function in the current operational environment as well as in free flight. The free

flight environment would enable greater flexibility in UPT selection based on

alleviation of current procedural constraints. The prototype also takes advantage of

advanced computer processing capabilities to implement more powerful

optimization routines than would be possible with older computer systems.

The key features of the prototype are:

• Iterative, dynamic programming-based trajectory optimization is performed

throughout the flight, accounting for horizontal, vertical and speed dimensions;

• Gridded forecasts of winds aloft are interpolated in space and time;

• Rapid optimization is performed using iterative, adaptive search grids;

• Modes of optimization include:

• Minimum DOC, minimum flight time, or minimum fuel;

• Forward or backward time processing to allow starting with a fixed takeoff

weight or ending with a fixed landing weight;

• Cruise climb or step climb and descent procedures are selectable;

• Airspace restrictions, such as Special Use Areas (SUAs), severe weather regions,

or congested areas, are enforceable;

• Mid-flight replanning is supported; and

• Object-oriented software design is implemented.

The features and the operation of the prototype are described in the following

sections. The sections provide an overview of the flight planner, and describe the

flight time and fuel burn calculation procedure used to model aircraft performance.

The companion Appendix A provides a user's guide for program operation and the
software structure.

3.1 Flight Planner Overview

The flight planner searches a four-dimensional wind and temperature grid to

identify the optimal route, altitude and speed for successive segments of a flight. An

iterative process is employed in which a series of trajectories are successively refined

until the UPT is identified. Figure 7 is an example of three successively generated

origin-to-destination trajectories projected on to the horizontal plane. Each of these

three routes has a corresponding optimum vertical profile. Figure 7 also shows the

final fourth vertical profile produced by the iterations. Each iteration produces a

19



segment-by-segment optimum speed schedule The wind field at one cruise flight
level is shown for illustration.
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Figure 7. Example Boston to San Francisco free flight trajectory with wind field

overlay

The following summarizes the steps of the flight planning process:

1. A weather processor updates and maintains meteorological information. In this

version of the software, the weather processor performs a single read in of 18

hours of weather forecast data, which are provided in 3 hour increments. A

forecast is re-issued every 12 hours. Other background information is also

defined, such as a database of navigation aid identifications and locations.

After this initialization a central loop of logic is entered. Within this loop a

flight plan is requested by the user, an optimal flight plan is generated by the

program, and program results are reported to the user.

2. At the start of the main loop, flight plan parameters are specified by the user. A

flight plan consists of departure and destination points, a departure and arrival

schedule, aircraft type information, aircraft loading and reserve fuel constraints,

and cost function parameters. In addition, the user may specify search grid

parameters to study program behavior or tune to a desired search characteristic.
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Restricted airspaces may be specified to account for special use areas (SUAs) or
areas of severe convective weather or other unfavorable conditions.

Once the flight plan parameters are specified, the automated search for a best

route begins. This is done in an iterative fashion. At each iteration a current

best route is used as the basis for building a search grid for determining the next

iteration's best route. The horizontal and vertical resolution of the search grid in

each iteration is set by user-defined parameters, but the iterative process is

designed to use smaller grid point spacings in each successive grid. The initial

route would be a sequence of great circle arcs along the great circle from origin to

destination. Alternatively, the initial route may be a sequence of great circle arcs

starting at the departure point, traveling through any target waypoints specified

by the user, and ending at the destination point. Once an iteration's grid is

generated, then a dynamic programming algorithm based on Dijkstra's

"flooding" algorithm [9] is used to search for the best trajectory, including speed

schedule, through the connections in this grid.

Four iterations are used:

@ The first iteration is a simple vertical profile and speed schedule optimization

along the great circle route, which provides a quick indicator of flight time

and fuel requirements. For this iteration, a very rough vertical search grid is

constructed along the great circle. An example vertical grid is shown in Figure

8 for the Boston-to-San Francisco great circle route. This great circle route is

the northern-most track shown above in Figure 7.

x 104 OPTIMAL TRAJECTORY FIRST VERTICAL SEARCH GRID
i i i i i i

4
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Distance (nm)

Figure 8. Great circle iterative vertical search grid for Boston to San Francisco flight
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The second iteration constructs a wide network of arcs with fairly rough

horizontal and vertical resolution to ensure that all possible reasonable

regions for the best route are examined. This wide grid is centered around the

great circle-based solution, as illustrated in Figure 9 and 10 for horizontal and

vertical components. The wide grid is used to generate the second trajectory

solution for horizontal, vertical and speed components.

The third iteration constructs a finer horizontal and vertical grid, as shown in

Figures 11 and 12. This grid is centered around second trajectory solution in

order to refine the path in the most promising region. The irregular shape of

the horizontal and vertical envelop of this grid conforms to the route and

profile of the second trajectory solution. The fine grid is used to generate the

third trajectory solution for horizontal, vertical and speed components,
which includes the final route solution.

The fourth iteration constructs a very fine vertical grid along the final route,

and performs the final vertical prqfil_ and speed schedul¢ optimization. This

final vertical grid is shown in Figure 13 for the example flight.

The processes for generating the search grids and performing the trajectory

optimizations are described in the following paragraphs.

Grid Con_tructiqn -- A search grid based on a pre-defined route is automatically
generated as follows:

1. The pre-defined route is divided into equal length segments to satisfy criteria

based on the number of desired segments and limits on the maximum and

minimum length of a segment. The first pre-defined route in the iterative

process is a great circle on the earth's surface. Subsequent pre-defined routes are

projections of trajectory solutions along the earth's surface, and are used to

define the segments.

2. Preliminary grid points are generated along the surface of the earth as follows.

• A radial vector is constructed from the center of the earth to the endpoint of

each segment on the pre-defined route.

• Each radial is rotated perpendicular to its segment to define an arc along the
earth's surface.

Grid points are defined at equal distance along each arc along the earth's

surface. The distance between these grid points defines the horizontal grid

resolution for each iteration, and is dependent on user-specified parameters.

The horizontal grid width depends on user-specified parameters, and varies

depending on the location of the arc and the strategy for the given iteration.

For example, iteration 2 is meant to be wide, and its maximum width might

be set to 40% of the total flight length. Iteration 3 is tightly focused, so its

width would be much narrower. Iterations 1 and 4 only do vertical

optimization, and have zero width.
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Figure 9. Wide iterative horizontal search grid for Boston to San Francisco flight
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Figure 13. Final fine iterative vertical search grid for Boston to San Francisco flight

3. Airspace grid points are generated as follows.

• A radial vector is constructed from the center of the earth through each grid

point previously defined on the earth's surface.

• New grid points are defined at equal distance along each radial in a specific

range of airspace above the earth's surface. The distance between these grid

points defines the vertical grid resolution for each iteration, and is dependent

on user-specified parameters. The airspace range is defined by user-specified

parameters. Except for the first iteration along the great circle route, the

airspace covered along each radial is adjusted to follow the vertical profile of

the of the previous iteration's trajectory solution. Those grid points generated

by vectors through a common arc on the earth's surface represent a stage in

the dynamic programming optimization process. A stage may be

conceptualized as a vertical plane containing grid points at specific locations.

4. Two anchor grid points are defined at the origin and destination airports. These

represent the first and last stages.

5. Pairwise connections in the grid are made between a grid point in one stage to a

grid point in the next stage. These connections may be between two grid points at

the same or at different altitudes, and represent level, climb or descent flight

segments. The number and scope of connections are based user-specified and

default parameters. For example, parameter values may limit the maximum

horizontal divergence angle from a route, may limit the altitude range for climb
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or descent, or may require one grid point to be horizontally connected to at least a

minimum number of other grid points.

Q_ptimization - Once the grid for an iteration is generated, a dynamic programming

"flooding" algorithm is used to search for the optimal minimum cost route through

the grid. Cost is based on fuel burn or flight time calculations, or a combination of

both. This optimal route can be found searching stage-by-stage forward or backward

through the grid. For purposes of discussion, we assume we are searching forward

in the grid, and therefore forward in time. The principles are the same searching

backward. The concept is to flood outward from the departure grid point, traversing

each possible connection only once. As each grid point is reached, only the

connection with the lowest total cost to that point is recorded. That connection's

cost and state information is also retained. The flooding continues until the

destination grid point is reached, at which point the least cost connections are traced

back through the grid to identify the entire optimal path.

The evaluation of an aircraft's flight along a connection between two grid points is
handled as follows:

1. The approximate times at the current grid point and the next grid point are

determined, and linear interpolation in both time and space is used to determine

the meteorological conditions (wind vector and temperature) at those times at

those grid points.

2. If the current iteration is evaluating a level cruise segment:

• Linear interpolation is used again to determine the average wind vector and

temperature over the course of this segment based on the meteorological

conditions at the two grid points.

The airspeed which optimizes the cost function is determined by calculating

the performance of the aircraft over this segment at various airspeeds during

a cost minimization search. A constant true airspeed is assumed. The result is

the minimum cost of using this level flight segment and the associated flight
time.

3. If a climb or descent applies to the current iteration:

The segment is divided into a transition (climb or descent) and a level sub-

segment. If the change in altitude is more than 2000 feet, then this maneuver

is subdivided into multiple transition sub-segments, each of which does not
exceed this limit.

A cost minimization loop is used to determine the optimal length of the

level sub-segment by varying the length of this segment. This loop performs

the meteorological interpolation and optimum speed search described above.

The cost minimization loop is used to determine the optimal speed, cost and

flight time of the transition sub-section. A constant rate of climb or descent is
assumed.
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• The segment cost and flight time is calculated by summing the corresponding

values of the transition and level sub-segments.

The flight planner software allows the user to identify airspace regions for which

the flight is restricted from entering. The program labels the grid points and

connections in the restricted airspaces as disallowed for flight planning. Figure 14

illustrates the iterative search grids constructed for selected restricted airspaces and
the corresponding route solutions.

After a flight plan is finalized, a selected position on that flight plan may be used to

initiate replanning of the flight for updated flight and weather conditions.

3.2 Aircraft Performance Model

The program currently uses a total energy model [10,11] of the aircraft to calculate

fuel flow. This model was used because it provided data for several common

turbojet transport aircraft.

The aircraft performance model currently used in the optimal flight plan generation

kernel is a relatively simple model based on parametric modeling of various aircraft

using a total energy model. The model uses parameters published for over 100

aircraft types by the Eurocontrol Experimental Centre in the Base of Aircraft Data

Revision 2.4 [10], referred to hereinafter as BADA. Currently, parameters for seven

aircraft types are included in our optimal flight planner: Boeing 737-300, 737-400, 747,

757, 767, and McDonnell Douglas DC-9 and DC-10.
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Figure 14. Iterative grids and route solutions for restricted airspaces

The current aircraft performance model is qualitatively accurate and useful for

comparative studies of alternative flight plans. However, more accurate
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performance modeling would be neceF try if this flight planner were to be used for

generating ,,ht plans for commercia: :ght operations. The most practical

approach t '.ch detailed modeling _ ld be to convert from the expression-based

modeling tt nique currently in use to _ set of tabular data from which

interpolations could be drawn for specific flight conditions. The impact of such a

change on the run-time of the current flight planner would actually be to speed up

its performance slightly, since table lookups and interpolations are less

computationally expensive than the method currently in use. However, assembling

detailed and accurate tabular data for a number of aircraft types is challenging, in

that such data are usually generated at great cost by aircraft manufacturers and

airlines, and closely held as highly valuable proprietary information. For this

reason, the current approach was selected, which takes advantage of publicly

available performance parameters for a large number of aircraft. 1

Implementation -- Within the flight plan optimization program, the aircraft

performance model is typically used simply to calculate the fuel flow rate given the

aircraft type, weight, pressure altitude, temperature, airspeed and rate of climb.

Under certain circumstances, the independent variables specified (e.g. airspeed and

rate of climb or descent) may result in a specified boundary condition being exceeded

(such as maximum or minimum thrust). For example, a given airspeed and rate of

climb might require a thrust greater than the maximum allowed, in which case the

calling routine will be informed that this flight condition is not possible. Maximum

and minimum thrust levels are parametrically determined for each aircraft type and

flight condition.

For some portions of the flight planning algorithm, it is necessary to determine the

inverse problem of what true airspeed results from a given thrust and rate of climb

for specified aircraft type, weight, pressure altitude and temperature. Because closed

form solutions are quite difficult to determine for this problem, an iterative

approach is used to determine numerically the airspeed, using the relationship for

thrust as a function of airspeed and rate of climb given later.

After the aircraft performance model is used to determine the fuel flow rate for a

given flight condition, a cost to fly the segment in question at the specified airspeed

is assigned using the cost function

C = Cf Wf + Ct t (1)

where

Cf = cost of fuel per unit mass

Ct = cost of time per unit time

Wf = weight of fuel used to traverse segment

t = time spent to traverse segment

For each segment, whether level cruise, climb or descent, the optimal airspeed for

the segment is determined iteratively to minimize the above cost function, taking

into account the influence of wind for that segment. The minimum cost arrived at

IPerformance parameters from BADA are available in compressed form via anonymous ftp at bada.eurocontrol.fr. The
current revision is contained in bada/2.4/badaRevision2.4.tar.Z.
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in this manner is assigned to the particular flight segment, and ultimately forms the

basis for the dynamic programming search through the entire search grid to

determine the optimal trajectory.

Values for Ct will be different for different aircraft types and dispatcher's objective

for a particular flight. The value of Ct should include all costs of aircraft operation

directly proportional to time in flight (including flight-time-dependent crew and

maintenance costs). A convenient source for recent flight-time-dependent costs of

operation is the industry periodical Air Transport World[12] which publishes data

for different aircraft each month. The value of Cf is simply the cost of aviation fuel

per unit weight, recent values of which are available from the same source. Special

cases of interest for the cost coefficients include the minimum time trajectory, for

which Cf = 0, and the minimum fuel trajectory, for which Ct = 0.

Modeling Process -- The following is a detailed description of the aircraft

performance model currently used. A similar description of this modeling

approach can be found in User Manual for The Base of Aircraft DATA (BADA)

Revision 2.4.[11]

Required thrust is given by

mg.
T = --_-h + mg' + D (2)

where

T = thrust,

m = mass,
g = acceleration due to gravity,
V = true airspeed,
h = altitude,

D = drag.

Rate of climb is given by dh/dt in the above equation. Acceleration is given by

dV/dt, the rate of change of true airspeed, which is set to zero for each segment of

climb or descent. 2 The thrust calculated using this relationship is compared to the

(3)

maximum and minimum allowable values described later, and if it falls outside

these limits, the aircraft performance is limited appropriately.

Drag is represented by:

D = C DpV2S
2

2In the current implementation, this calculation is carried out assuming nonaccelerating flight, i.e. with the assumption of

constant airspeed. This assumption is reasonable for calculating cruise fuel flow, but breaks down when the aircraft is

climbing or descending at constant calibrated airspeed (CAS) or Mach number. For these conditions, a correction factor can

be applied to account for the rate of change of airspeed implicit in such a maneuver. However, in the current

implementation, climbs and descents are broken up into short constant-airspeed segments, so this correction factor is

assumed negligible. Airspeed changes are assumed to take place at the boundaries between segments, and there is no fuel

cost explicitly assigned to them by the program. This approximation introduces a negligible change in overall fuel

consumption for a typical long-distance flight.
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where CD is approximated by:

CD =(CDo + CD2C_X1 + CM,6M'6}. (4)

Hence the left coefficient is approximated by:

2mg

C L -_ .

Other coefficients and variables are:

(5)

p = density
S = reference wing area

CD0 = drag coefficient 0

CD2 = drag coefficient 2

CM16 = Mach 16 coefficient
M = Mach number

In practice, the density is calculated for a given geometric altitude or flight level

from a standard atmospheric model with correction for nonstandard sea level

pressure and nonstandard temperature. The coefficients S, CD0, CD2 and CM16 are

taken from the BADA tables for the aircraft being modeled.

Minimum and maximum thrust values are calculated by the following expressions.

If the thrust calculated using the relationships above falls outside the range given,

the flight planner calling routine is informed that the requested flight condition is

not feasible.

Maximum Thrust:

h 2 )
(Tmax)is A = CTc,1 ( 1 - h/CTc, 2 + CTc, 3 ,

Tmax = (Tmax)is A [1 - CTc, 5 (ATISA)ef f]

(6)

(7)

where

(ATISA)ef f -" ATISA - CTc, 4
(8)

and this correction is limited by:

0.0 _< CTc, 5 (ATISA)eff
< 0.3 (9)

and

CTc,5 > 0 (10)

The coefficients CTc, 1, CTc, 2, CTc, 3, CTc, 4, and CTc, 5, are from the BADA tables

for the aircraft being modeled. ATISA is the difference between the temperature

and the standard day temperature.
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Minimum Thrust:

For h <hdes,

(Tdes,low)no m = CTdes,lo w (m/mref) 0"5 (Tmax climb)no m

For h > hdes,

(Tdes,high)no m = CTdes,hig h (m/mref) 0"5 (Tmax climb)no m

and Tdes is calculated as:

(11)

(12)

Tdes = (Tdes)nom(M/Mdes,ref)2 (13)

The coefficients hdes, CTdes,lo w, CTdes,hig h, (Tmax climb)no m, mref and

Mdes,ref are from the BADA tables for the aircraft being modeled.

With thrust determined using the relationships above, fuel flow rate is given by

Wf = tiT, (14)

where

and

(15)

rl = specific fuel consumption
Cfl = fuel coefficient 1

Cf2 = fuel coefficient 2

If the fuel flow calculated from the above relationship falls below a minimum given

by the following expression, the fuel flow used is set to the minimum.

Wfmi n = Cf3 [1 + (h / Cf4)], (16)

where

Cf3 = fuel coefficient 3

Cf4 = fuel coefficient 4

The coefficients Cfl, Cf2, Cf3 and Cf4 are taken from the BADA tables for the aircraft

in question.

In all, nineteen coefficients from the BADA tables are used as parametric inputs to

the performance model for the aircraft in question. This level of model fidelity has

proven adequate for qualitative assessments of the advantages of our flight plan

optimization process.

The details of the flight plan kernel are found in Appendix A. A preliminary listing

of data members and objects are presented on Appendix B.
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4. Recommendations for Future Advanced AOC Workstation
Design

The following recommended tasks and preliminary software data specifications are

made to support NASA's development of an advanced AOC workstation

simulation capability for laboratory experiments. The workstation would allow

operational test and evaluation of alternative procedures for integrating dispatchers

into the air traffic management (ATM) decision making process. A dispatcher would

operate the workstation during real time experiments. These exercises would

support NASA's development of AATT decision support tools, including

enhancements for the Center-TRACON Automation System (CTAS) and the

Surface Movement Advisor (SMA).

4.1 Tasks

The recommendations assume Seagull's flight planner is installed in one or more
Unix workstations at NASA Ames simulation laboratories. The recommended tasks

listed in the following are logical extensions to the current flight planner.

1. Expand the current flight planning software to encompass the following:

a. For specific aircraft types, add fuel burn tables and models where fuel burn

is given as a function of airspeed, altitude, aircraft weight, and outside air

temperature. Include other constraint data such as maximum takeoff

weight, speed and altitude boundaries.

b. Add ability to store and use incoming GRIB code wind and temperature in
a weather data base.

c. Add the Jeppesen or equivalent navigation data base providing standard

instrument departures (SIDs) and arrival routes (STARs), runways,

navigation aid locations, restricted airspace, oceanic track entry/exit points,

international flight information region (FIR) boundaries, etc.

d. Add a National Route Program (NRP)-compliant flight planning capability

that accounts for SID and STAR requirements and airspace constraints.

e. Add example OAG schedules for selected city pairs and a few major airlines.

f. Modify algorithms and code as appropriate to improve flight planning

fidelity and robustness.

2. Build a dispatcher front end - graphical user interface (GUI) - to enable

efficient flight planning and replanning for an arbitrary pairing of cities,

airspace points, or both. Include ability to designate alternates, re-dispatch

points, contingency fuel load, multiple sequential flight segments, etc. Also

add output so that resulting flight plans are in correct International Civil

Aviation Authority (ICAO) form for international flights and FAA form for
domestic travel. This includes electronic forms to be sent to both the FAA for
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flight filing and to the flight management system (FMS)/pilot for in flight
use.

3. Expand the GUI to include an aeronautical chart/map display with input

from simulated flights to represent a flight following interface. This includes

the option for tags showing aircraft location, velocity, fuel remaining,

altitude, expected time of arrival (ETA), etc. Include ability to pan, zoom and

reconfigure the region shown on the monitor. Include ability to overlay wind

vectors or convective weather cell locations at various flight levels. Include

ability to show a single airline's fleet or a composite of all flying aircraft

similar to the Aircraft Situation Display (ASD). Include ability to show airport

surface map with taxing aircraft and SMA status.

4. Add ability to show dispatcher status of CTAS information such as Traffic

Management Advisor (TMA) schedule regarding approaching aircraft within

the airline's fleet. Also include ability to show planned departure schedules,

planned overflights, and other airline fleet, military, or general aviation

aircraft as airspace constraints.

5. Extend the CTAS interface to allow the dispatcher to manipulate the TMA

schedule for preferred arrival or departure scheduling.

6. Provide the dispatcher with a group flight planner and assessment capability

that is sensitive to traffic loadings at fixes and comer posts, bank integrity

requirements and rush (e.g., east-west push) characteristics.

7. Integrate the AOC workstation into the NASA simulation network to enable

real time experiments with dispatchers interacting with pilots and ATM -

both air traffic control (ATC) and traffic flow management (TFM) - for free

flight, CTAS, and SMA testing.

8. Work with NASA and airline personnel to plan meaningful experiments to

evolve free flight.

9. Conduct special studies to evaluate the potential benefits of selected

enhancements, including top-of-climb (TOC} replanning.

With respect to the TOC replanning special study of Recommendation 8, at least one

dispatcher [3] has pointed-out that more efficient flight plans might be produced by

an advanced AOC system than most current systems if more accurate departure

information is used. The actual payload is not known precisely until terminal gate

departure, which is after flight plans are filed. The delay encountered and route or

trajectory used during taxi-out and climb are subject to perturbation due to traffic,

meteorological and related factors. The resulting travel time, distance and fuel burn

during taxi-out and climb cannot be predicted precisely during pre-departure flight

planning. The actual location of TOC and the actual weight of the aircraft at TOC

may vary significantly from those that were planned. Hence, the optimum trajectory

beyond the actual TOC could differ from that of the flight plan.

The amount of the cost savings possible by replanning at TOC is a topic for further

research. Most current flight planning systems are not designed to implement
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replanning easily at airspace points that are not part of the flight plan, and they

would not be suitable for supporting an extensive study of TOC replanning.

Replanning is a feature of an advanced AOC workstation and of our prototype flight

planner kernel. We recommend using the flight planner kernel and airline historic

data describing actual flight plans to evaluate the potential benefits of TOC

replanning. Our existing free flight trajectory data base is a candidate source of actual

flight plans. The kernel would generate optimum trajectories from actual TOCs

using appropriate meteorological and aircraft performance data. These trajectories

would be compared with the actual flight plans to assess the worth of implementing

TOC replanning.

4.2 Preliminary Software Data Specifications

The advanced AOC workstation would provide the dispatcher with various output

features, including:

• Graphical display of traffic using an aircraft situation display (ASD) feed;

• Separate graphical display of weather;

• Text command window for flight plan generation;

• Text window for weather reports and forecasts;

• Text window of airline special reports and data lists;

• Graphical overlay of flight plan route on ASD display with time/fuel burn;

• Graphical weather overlay on ASD display; and

• Paper copies of flight assignments; printed mail.

Input features would include:

• Point-and-drag computer-generated flight plan route;

• Flight replanning from arbitrary location to arbitrary destination; and

• Telephone/radio switchboard.

Voice and data link communications facilities and hard copy documents would also

be furnished. It is recommended that the system design be expanded to include these
features.

The data items identified in Appendix B represent the initial step in defining a

software specification that supports the advanced AOC workstation features.

Appendix B lists objects and their data members, and represents one approach for

organizing the software. Data members are identified functionally by name, but

their data type (e.g., integer, float, char) are to be determined (TBD). The intention is

to identify a broad range of data items as a basis for subsequently developing more

detailed software specifications.

In the context of a C++ program definition, the more detailed specifications would

modify and reorganize the class objects and data members, identify data types and
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operating functions, identify class privileges and hierarchies, including inheritance,

container and friend relationships, and describe libraries, utilities, and interaction

mechanisms. It is recommended that this approach be followed in extending the
design of the AOC workstation.
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Appendix A -- Flight Planner Kernel Operation

Various user interfaces with computer system are provided to operate the program,

set up data, and control output data.

Running the Kernel

The program is started by calling the program name with no arguments.

The first activity visible to the user is a one-time read-in of a weather data set for an

18 hour portion of time.

After the weather data has been read in, the program enters a flight planning loop.

For each flight plan, the user is asked for a number of parameters governing that

flight plan, and then the corresponding flight plan is generated. Summary

information concerning the flight plan is displayed on the user's display, and data

files for the current flight plan are placed in the "Results" directory. To end the

program, enter "quit" as the starting or ending airport.

Each of the questions has a default value (often indicated in parenthesis) that will be

used if the user simply types the "return" key. If at any point you wish to start over

filling in parameters for the flight plan, type the "tab" key and then enter return.

In any of the questions that ask for a location there are several forms that the answer

may take. The "nav.dat" file contains definitions for names, and these names may

be used to refer to the corresponding location given in that file. For example, "LAX"

will give you the location of Los Angeles International. Another way to specify a

location is to enter the word "point." You will then be prompted with

Please enter Name Latitude Longitude Altitude:

The latitude and longitude are in decimal degrees, and the altitude is in feet. For

example, to specify 10000 feet above Logan airport in Boston you could enter

BostonSky 42.3575 -70.9896 10000

After a point has been specified in this way, the name may be used anytime later in

the program run just as any pre-defined entry in nav.dat is.

A final method for specifying a location is to use the "waypoint" command. This

may be used anytime after the first flight plan has been done. This will cause a list

of waypoints to be displayed from the last flight plan and you will be prompted to
choose one.

The following is a list of the questions asked of the user to prepare the flight plan.

Please enter starting airport:

Please enter ending airport:

Both of these questions should be answered with a location specification as

previously discussed. If the second question is answered with the keyword "extra,"

you will be prompted for target waypoints to add to the middle of the initial route.
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These waypoints are not considered mandatory and are only used for generating the

starting route. The final flight plan need not pass through these waypoints.

After these questions have been answered the program will print out the names and

positions of the endpoints of the flight plan. Any waypoints produced for a finalized

flight plan may subsequently be identified as the starting airport and thereby used as

the starting point to replan the flight.

The next question, or series of questions, allows restricted airspaces to be specified

for the flight plan. The restricted airspaces are simply modeled as circles in this

version of the program, so they are described by a center and a radius.

Please enter restricted airspace center (none):

If a location is specified for the center of airspace then you will be prompted with

Please enter airspace radius (200 (nm)):

to indicated the desired radius. You may specify as many airspaces as you like for a

given flight plan.

The next questions concern the plane type to be used for the flight plan.

Plane type is: B757 - Boeing 757

Would you like to change the plane type (y/n)?

If you want to use a plane other than the B757, enter "y" and you will be given a list

of plane types that you can choose from. The next area of information and

questions concern the cost function used for the flight. A cost model which is a

linear cost of time and fuel is used. The current parameters for each of these is

listed. For a B757 the current values are given as

Cost per kg of fueh 0.237

Cost per hour of time: 540

Would you like to change the cost function values (y/n)?

If you enter "y" to this last question you will be prompted for new values for these

two parameters. The final area of standard questions concerns the loading of the

plane for the flight plan.

Reserve Fuel (kg): 3000

Payload Mass (kg): 14000

Would you like to change the reserve fuel or payload mass value (y/n)?

Answering "y" to the question will provide prompts for new values. Note that the

use of the fuel value will change depending on the direction of search for the grid.

The default direction is for backward search through the grid. The default direction

is changeable as described in the expert section which starts in the next paragraph.

For backward search the program provides whatever starting fuel is necessary to

arrive at the destination with exactly the specified amount of reserve fuel. For

forward searches the program initially loads the plane with the maximum amount
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of fuel allowed given the payload loading, and so the reserve fuel specified is
essentially ignored.

Would you like to set expert level grid parameters (y/n)?

At this point the user is given the choice of either ending the standard dialogue of

flight plan parameters or continuing on with questions that might normally be

reserved for expert program users. If you enter "n," then the program will start

calculating the flight plan and the results will be displayed. If you enter "y," then

the following additional questions will come up.

Grid direction (b/f):

You may choose either "b" for backward or "f" for forward. Depending on this

choice your next question will be one of the following two questions.

Arrival time (m/d/y-hr:min (6/30/1996:5:50)):

or

Departure time (m/d/y-hr:min (6/29/1996:12:10)):

The arrival time is asked for in backward search, and the departure time is asked for

in forward search. Note that the time must be given with the exact punctuation

given in the two examples and with no spaces. The time specified must allow the

entire flight plan to fall completely within the time the weather data are available

for. In the current case, this means the entire flight plan must occur during the 18
hour interval between 6/29/1996, 12:00, and 6/30/1996, 6:00.

Starting iteration step for step maneuvers (4):

Climbs and descents from one grid point to the next are done in one of two ways.

The "steady" approach is to do a straight geometric climb from one grid point to the

next with a constant rate of climb or descent for the entire segment. The "step"

approach uses either a step climb at the start of the segment or a step descent at the

end of the segment -- in both cases the rest of the segment is performed with level

flight. If a step maneuver is used, the program not only optimizes over the best

possible airspeeds to use for the separate level and climb/descent portions of the

flight, it also optimizes over the rate of climb or descent (or equivalently the length

of level flight). Since step maneuvers are more computationally expensive and

since steady maneuvers provide adequate accuracy for route optimization, normally

step maneuvers are only used on the last iteration of the search. If you specify an

iteration larger than 4, then no step maneuvers will be used at all in this flight plan.

Minimum climb rate (fpm (300)):

This specifies the minimum acceptable climb rate. All step climbs will have at least

this climb rate. During iterations where steady climbs are used, a steady climb will

only be used if a step climb with this minimum rate is possible.

Maximum descent angle (degrees (7)):

This is included to keep descents in line with normal commercial flying practices.
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Vertical change cost percentage (0.7):

To keep flights from becoming too much of a roller coaster ride, a penalty is assigned

to doing a climb immediately followed by a descent, or doing a descent immediately

followed by a climb. The cost assigned is equal to this percentage of the last segment
cost.

Iteration 4 Vertical Increment (1000 (ft)):

The last search iteration is entirely a vertical profile optimization. This increment

specifies the vertical spacing of grid points for iteration 4.

Stage distance scaling (1.0):

This parameter may be used to set the horizontal spacing of grid points. The total

width of each stage is always the same. For example, setting the scale factor to 2.0

will double the number of grid points along each grid stage.

Iteration 2 connection angle (30 (deg)):

Iteration 3 connection angle (20 (deg)):

These angles refer to the maximum allowed angle that will be connected

automatically. The angle is measured by calculating the angle between this potential

segment and the corresponding flight segment of the best known route used to

generate this grid.

Maximum segment length (nm (350)):

Minimum segment length (nm (25)):

Target segment count (13):

These three parameters effect the segment length used between grid stages. The

maximum and minimum values are rough upper and lower bounds which the

program attempts to not go beyond. The target segment count is the desired number

of segments to be used. The segment count is used unless using it would cause the

segment length to exceed one of the two limits. For iteration 4 the segment lengths

are cut in half unless this brings the length below the minimum limit.

Use extra printing (t/f):

This parameter turns on or off the user display of the individual segment flight plan
information.

Most of the flight plan information displayed to the user is self explanatory. If "'extra

printing" is left on, then information from each of the four grid search iterations is

printed out after it is calculated, with summary information always available at the
end.

A segment may be flown using more than one maneuver. A maneuver is a portion

of the flight flown at a constant true airspeed and with a constant rate of climb. The

maneuver information is given on lines that start with "M" followed by the

maneuver index. The information describing a maneuver is of the form

MI: A nm, B kg/m, C%, D kg, E fpm, F(G)(H) kts, I -> J
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where "A nm" is the ground distance covered, "B kg/m" is the fuel flow rate, "C%"

is the percent of maximum thrust, "D kg" is the average mass of the plane, "E fpm"

is the climb or descent rate, F is the true airspeed in knots, G is the airspeed in mach

units, H is the ground speed in knots, I is the starting altitude in feet, and J is the

ending altitude in feet.

Creating a Weather Data Set

The raw weather data we have been using has been from the publicly accessible

internet site "nic.fb4.noaa.gov." On this site the directory "/pub/avn" contains two
subdirectories "avn.00z" and "avn.12z" which contain aviation related weather

information updated each day at 0 Zulu and 1200 Zulu, respectively. In these

directories are many data files. The files of interest have names of the form

gblav.TxxZ.PGrbFxx, where TxxZ is either T00Z or T12Z and Fxx ranges from F00 to

F72 by 3's. These files are in GRIB format (GRIdded Binary) and use National

Environmental Modeling Center (NEMC) grid #3 layout -- the data is given in a

global 1 degree x 1 degree (lat/long) format. There are quite a few data fields

available in these files. The data fields we use are the temperature ("TMP'),

geopotential altitude ("HGT"), north wind component ("VGRD'), and east wind

component ("UGRD"). This data is given at the 16 mandatory pressure levels

ranging from 1000mb to 10mb. Each file represents a weather forecast offset from

the given base time -- for example, gblav.T12Z.PGrbF09 is the 2100 Zulu forecast

given in the 1200 Zulu data set. So, the first step is to transfer the GRIB files

gblav.TxxZ.PGrbF00 through gblav.TxxZ.PGrbF18 to your site.

The NEMC has provided a program called "wgrib" for decoding and handling the

data in a GRIB file. We have successfully compiled and run this program on our

Sun and NT boxes. The awk script "grib.awk" can be used to filter the GRIB file to

reduce it to just the data of interest.

The following is the contents of the file "grib.script" which is a Unix shell script for

performing this procedure:

wgrib.sun-s $1 l awk-f grib.awk I wgrib.sun-GRIB $1-i

(note that wgrib.sun is the Sun executable of the wgrib program)

When grib.script is called with a filename of one of the NEMC raw data files then a

file named "dump" is produced, which is a new GRIB file containing winds,

temperatures, and altitudes for just the pressure levels of interest.

The executable "WxPreprocess" is then run on each of the resulting "dump" files to

produce a weather data file in the form used by the flight planning program. This

program is called with one argument, the name of the dump file. The output file is

automatically named using the time of the weather forecast. This output file should

be placed in the "wx.dat" subdirectory.

Since the data files used by the flight planning program are in binary form, and since

they are read into the program with essentially no processing, they are dependent on

the byte ordering of binary data for the machine they are produced on as well as the
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byte ordering of the machine the flight planning program is run on. If the data files

need to be moved between a little endian and a big endian machine, the executable

"wx_swap" should be used for the conversion of all of the weather data files before

running the flight planner. The program wx_swap is called with two arguments --
the first is the name of the input file to be converted, and the second is the name to

be used for the output file.

Flight Planner Graphical Display Utilities Description

The current optimal flight plan demonstrator produces output files at run time that

can be post processed to produce graphical displays of the search grids used, the

horizontal and vertical profiles of the selected 3D optimal trajectory, and any

restricted airspace zones enforced by the user.

Scripts have been written to enable graphical depiction of these results using Matlab

(a commercial software package produced by The MathWorks, Natick, MA). In

order to use these scripts, the user must have a copy of Matlab running on a

computer on which the flight planner output files are available, and it is most

convenient if this is the same computer that the flight planner itself is being run on.

The following descriptions of the Matlab scripts are intended as a brief reference

guide to the available display utilities. A future version of the flight planner would

likely have its own built-in graphical user interface, which would include many

functions not provided by the current Matlab display scripts.

Preparing to Display Results

Prior to using the graphical display scripts, copies of the scripts should be placed in

the "Results" directory under the directory in which the flight planner executable

resides. Alternatively, if Matlab is not available on the same computer on which

the flight planner will be run, the scripts should be placed in the same directory as

result files generated by the flight planner.

Finally, Matlab should be run from within the same directory, and the command

load topo

should be issued. This command loads a Matlab-resident database of Earth

topography to enable display of background coastline maps.

To ensure that Matlab's current working directory is the same directory within

which the display scripts reside, issue the command

help vert34

If Matlab cannot find the file and display the help lines for it, then it will be

necessary to change Matlab's working directory before proceeding. If other methods

for doing this fail, as a last resort one can open the M-file "vert34.m" using "Open

M-file" under the "File" menu in Matlab; then select the "Save and Execute" option.
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Matlab display scripts

The three types of graphical displays generated by the current Matlab scripts are

listed below with the scripts that generate them.

1. Interim and selected routes overlaid on wind vector field, plus vertical profile

of selected trajectory

s.m No restricted airspace shown
sas.m Restricted airspace shown

. Interim and selected routes overlaid on last two search grids

g.m No restricted airspace shown
gas.m Restricted airspace shown

°

vert 1.m
vert2.m
vert3.m
vert4.m
vert34.m

Vertical profile of search grid

Exaggerated vertical profile of search grid 1
Exaggerated vertical profile of search grid 2
Exaggerated vertical profile of search grid 3
Exaggerated vertical profile of search grid 4
Exaggerated vertical profile of search grids 3 and 4

In order to execute any of these display scripts, simply type the name of the script

within the Matlab window after the instructions above have been followed, leaving

off the ".m" extension. For example, to show a display of the interim and final

horizontal routes selected by the flight plan optimizer on a background of wind

vectors, along with an exaggerated vertical profile of the flight trajectory, one would

simply type

s <return>

at the Matlab prompt.

The graphical results shown by these scripts are useful for engineering evaluation of

the performance of the optimal flight planner. They are not intended to exemplify

the type of display that would be most useful to an airline dispatcher.

Software Structure

The flight planner software is modularly structured using C++ object oriented

programming. The software consists of database and processing files, developed

from a set of computer program class objects.

Files Inventory

The data processing files are organized as follows:

1. Executable File -- named "fp.exe," "flight_plan" or otherwise, as appropriate

2. Navigation Data File -- named "nav.dat." This file should be in the same

directory as the executable. This contains a list of place names that can be used
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for location references in the main program. The format for each line in the file
is:

<place name> <latitude> <longitude> <altitude> <anything else ignored>

The place name cannot contain any spaces or tabs, but is otherwise unrestricted.

The latitude and longitude should be given in a decimal number of degrees. The

altitude should be given in a decimal number of feet. Anything after the altitude

is simply ignored.

3. Weather Data Directory -- named "wx.dat." This directory should be a

subdirectory of the one containing the executable. The data files in this directory

should have names of the form WX.<year>.<2 digit month>.<2 digit day>.<4

digit hour>.F<hour offset>, for example "WX.1996.06.29.1200.F09."

4. Results Directory -- named "Results" to receive various output files produced

by the flight planning program. This directory should be a subdirectory of the

one containing the executable. The files in this directory are overwritten during

the production of each new flight plan during the running of the program. The

files that are produced by the program and installed in this directory are as
follows:

4a. Airspace.dat - This file contains a geometric description of any restricted

airspaces specified by the user for the current flight plan. If none are given

the file will be empty. For each restricted airspace there is a header followed

by data. The first line of the header consists of two numbers -- the first is the

number of lines in the header and the second is the number of lines of data.

Currently the rest of the header should be ignored. The data lines each

consists of a pair of latitudes and longitudes. When connected up these

locations trace out the boundary of the given restricted airspace.

4b. Link <n>.dat (for n = 1, 2, 3, and 4) -- These files list the links used in the

horizontal version of the grid for iteration n. Each line in a file describes one

link. There are four numbers in each line -- the first pair of numbers are the

latitude and longitude of the start of the link, and the second pair of numbers

are the latitude and longitude of the end of the link.

4c. N ode <n>.dat (for n = 1, 2, 3, and 4) -- These files list the nodes used in the

horizontal version of the grid for iteration n. Each line in a file describes one

node. Each line contains the latitude and longitude for a given node. Note

that the first and last nodes are each given once at the beginning of the file.

After those two listings all of the nodes (including the first and last nodes) are

given.

4d. Vert <n>.dat (for n = 1, 2, 3, and 4) -- These files list the altitudes used in

the spatial grid for iteration n. Each line gives one altitude used by a stage in

the grid. A line contains two numbers -- the first is the geometric distance of

a representative node in the stage from the start of the grid, and the second is

the altitude in feet that is used to generate the grid for that stage.
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4e. Route.dat -- This file contains information on the best routes found by

each iteration of the program. Each line in the file contains 11 numbers that a

waypoint along the route. The first number is the iteration number, the

second is the waypoint index, the third is the waypoint latitude, the fourth is

the waypoint longitude, the fifth is the geometric altitude in feet, the sixth is

the pressure altitude in 100's of feet of one end of this flight segment, the

seventh is the time in seconds taken so far in the flight plan at the start of this

segment, the eighth is the mass in kilograms of the fuel used so far at the start

of this segment, the ninth is the true air speed in knots, the tenth is the mass

in kilograms of the plane sometime during this segment, and the eleventh is

the direct geometric distance in nautical miles from the start of the flight.

4f. Wind.dat & Wind.<date>.<altitude> -- The current pressure altitudes (in

feet) used for these output files are 30106, 34052, 38730, and 44739. The data in

each of these files give the wind information for the given pressure altitude

for the given date. Each line in such a file consists of four numbers. The first

is the latitude and the second is the longitude. The third and fourth numbers

are the east and north wind components respectively given in meters per
second.

Modules and Classes

The code objects and their file locations are organized as follows:

1. Airspaces -- The source code for this is contained in the files: Region.cpp,

Region.h, RestrictedAirspace.cpp, and RestrictedAirspace.h.

la. Re_ions

• BoundarySegment

This class inherits from the Arc geometry library class. In addition to the

normal Arc information, it also has member information for the normal of

the plane which goes through the center of the earth and the two Arc

endpoints. This plane can then be used as part of a quick test to see whether a

point on the small circle that contains the Arc is actually on the Arc.

• BoundingCircle

This class represents a spherical small or great circle. Its principle methods

are PositionIntersectsBoundingCircle and ArcIntersectsBoundingCircle.

BoundingCircle objects are used to provide simple, approximate boundaries

for regions, and these two methods provide quick tests for deciding whether

further investigation is needed when looking at whether a Position or Arc

intersects a region.

• ConvexRegion

ConvexRegions are areas on a sphere that are describable as having a

boundary made up of a convex collection of BoundarySegments. It has
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associated with it a BoundingCircle used for quick estimates of its size. Its

principle methods are PositionIntersectsConvexRegion and

ArcIntersectsConvexRegion, which are used for determining whether a

position or arc intersects the region.

• Region

Regions are made up of a collection of disjoint ConvexRegions. It has

associated with it a BoundingCircle used for quick estimates of its size. Its

principle methods are PositionIntersectsRegion and ArcIntersectsRegion,
which are used for determining whether a position or arc intersects the

region.

lb. Restricted Airspace_

• RestrictedAirspace

This class inherits from the Region class. Its principle methods are

PositionIntersectsAirspace and ArcIntersectsAirspace. These methods are for

determining when grid points or flight paths go through a restricted airspace.

• RestrictedAirspaceList

This class provides simple methods for handling lists of restricted airspaces.

2. Fli_htPlan -- The source code for this is contained in the files: FlightPlan.cpp
and FlightPlan.h.

• Schedule

This class provides simple schedule data. Currently included are the starting

and ending location, departure and arrival time, and the plane type.

• RouteRecord

This class is designed to hold the summary data for the best route found

during each iteration of a flight plan. It contains the node and link count for

the associated search grid, the total ground distance, the total flight time, the

total fuel consumed, the total cost of the flight, and the elapsed computation
time to do all of the calculations for this iteration.

• UserGridParameters

This is a simple class designed to communicate user parameter selections to

the rest of the program.

• FlightPlan

This class brings together all of the information needed to create, analyze and

generate a flight plan. The data associated with this class is: a Schedule,

PlaneData for the plane to be used, WeatherService, the NavAidData

database, the starting route (usually a great circle), an output file for route

data, RouteRecords for each iteration of the flight plan search, and a
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RestrictedAirspace list. This class has a number of significant methods
associated with it:

CreatePlan -- This gathers together the data needed to create a new flight

plan. The vast majority of this effort is receiving flight plan parameters

from the user and filling in associated information once the parameters
are selected.

CalculateRoute -- This is the main calculation loop of the program. It
controls the four iterations of the best route search. It starts out with a best

known flight route which is the great circle route. For each iteration it

first calculates the grid parameters to use by calling Set_Grid_Rules, it

then subdivides the best known route using

Subdivide_Ground_Flight_Route, uses the best known route to make a

horizontal grid with Make_Horizontal_Grid_From_Flight_Route, makes

a spatial grid from the horizontal grid using

Make_Spatial_Grid_From_Horizontal_Grid, finds the best route in the

spatial grid using FindBestFlightRoute, and finally displays and records

the iteration information using PrintFlightPlanSummary.

Set_Grid_Rules -- This determines and sets all of the grid spacing, width,

and height rules and parameters for generating horizontal and spatial

grids.

FindBestFlightRoute - This performs a flooding search throughout the

spatial grid for the optimal flight route in that grid. This floods out from

one end of the grid one stage at a time. For a given node in a stage it looks

at all nodes in the previous stage that are connected to it. For all those

nodes it calculates the total cost of arriving at the current node by flying

through the node in the previous stage. It then compares all of these costs

and records the single, lowest cost node in the previous stage. When it

finishes this flooding out through the grid, it then finds the best route

through the grid by starting at the last endpoint node and backtracking

along best connections through the graph to the other end of the grid.

PrintFlightPlanSumraary -- This displays and records summary

information about each flight plan iteration after the calculation is done.

If user display printing is enabled, then flight plan information is

displayed to the user for each maneuver for each waypoint in the route. It

also puts a subset of the information about each waypoint into the

"Route.dat" data file. It records basic iteration summary information into

a data structure for later display by the Report method at the end of the

entire flight plan calculation. Finally, it records altitude information

about the spatial grid into the "Vert_<n>.dat" file.

Report -- This displays to the user the final summary information after all

of the iterations have finished and the flight plan work is complete. The

summary information is brief information concerning the results of each

iteration. If the flight plan exceeds loading limits for the plane an error
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message will describe the problem and display the values of related

parameters.

3. Grids -- The source code for this is contained in the files: DirectVEGraph.cpp,

DirectVEGraph.h, fp_grid.cpp, fp_grid.h, and GridRules.h.

3a. Graph -The graphs used here are directed graphs with explicit vertices and

edges as objects in their own right (in contrast, say, to having the edges

implicitly recorded by having a list of connected vertices).

• Vertex<VertexData, EdgeData>

These objects maintain a list of the edges coming in and a list of the edges

going out from this vertex. In addition, an object of type VertexData is part of

the object, and there are simple setting and getting methods available for

accessing that data.

• Edge<VertexData, EdgeData>

These objects contain a reference to the vertices at their starting and ending

endpoints. In addition, an object of type EdgeData is part of the object, and

there are simple setting and getting methods available for accessing that data.

• DirectVEGraph<VertexData, EdgeData>

An object in this class contains a set of Vertex's and a set of Edges. There are

basic methods for adding and removing a Vertex or an Edge from the sets.
Since these sets tend to have thousands of elements, certain allowances have

been made for the sake of efficiency for our particular application. In

particular, these sets are maintained as simple vectors and no duplication

checking is done when a Vertex or Edge is added.

3b. Grid

• GridPosition

This is just for recording the stage in a Grid a node is in.

• AltRestrictions

This is designed to record the kind of altitude restrictions that can be

associated with a link or node in order to generate reasonable links or nodes

in a spatial grid. There are three kinds of these restrictions used. One kind is

a simple explicit list of altitudes. Another kind contains a starting and ending

altitude and the altitude increment to use to generate altitudes in between.

The final kind produces relative altitudes -- it produces a fixed range of

altitudes about a given central altitude, with the additional restriction that all

of the produced altitudes must stay between a stated minimum and
maximum.

• NodeData

Objects in this class contain all of the information needed to be stored at

nodes in a grid in order to do a flooding search through the grid. Member
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data consists of Position, geometric altitude, pressure altitude, GridPosition,

WeatherColumn, approx, time arriving at the node, approx, plane mass,

altitude restrictions, PlaneState, best grid link found by the flooding search,
reference vertical node, and linked list of vertical nodes.

• LinkData

Objects in this class contain all of the information needed to be stored at links

in a grid in order to do a flooding search through the grid. Member data

consists of altitude restrictions, geometric length of link, and the list of

maneuvers used to fly the link.

• FPNode

This is essentially just another name for the class
Vertex<NodeData,LinkData>.

• FPLink

This is essentially just another name for the class Edge<NodeData,LinkData>.

• FPGrid

This class inherits from DirectVEGraph<NodeData,LinkData>. Member data
in this class records the start and end nodes as well as the sets that form each

of the stages of the grid.

• FPFlightRoute

This is an FPGrid that is assumed to be just a single linked list of nodes. Each

node has at most one link coming into it and at most one link going away

from it. Usually the stage information is not set.

• GridWidthRule

This class is used to describe the width rules used to generate horizontal grids.

Member data includes the grid width at the endpoints and in the middle of

the grid, how flat to curve the width from the middle to the endpoints, and

whether to use a fixed separation distance or node count when filling out the

nodes in each stage.

• GridHeightRule

This class is used to describe the altitude rules used to generate the vertical

nodes in a spatial grid. The member data describes a maximum and

minimum altitude, as well as the altitude increment for filling out the nodes

in between. Additionally, there is a connection limit which sets the

maximum altitude change allowed when creating a link between two nodes.

• GridConnectionRule

This class is used for describing which links may be created between stages in

a horizontal grid. The member data describes the maximum deviation angle

allowed for making a connection, and whether that angle is measured
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relative to the direction of the destination node or relative to the flight route

used to generate the horizontal grid.

• Miscellaneous functions include:

Subdivide_Ground_Flight_Route -- This takes a given flight route and

subdivides it as needed to meet the given requirement concerning the

maximum allowed length of a segment. This also includes special rules

for the takeoff and landing portions of the flight so that not too many low

altitude nodes will be generated near the ends of the grid.

Make_HorizontalGrid_Frorn_Flight_Route -- Given a FPFlightRoute

object this creates a horizontal grid centered about the flight route. This

uses the given grid rules to decide on stage widths and the spacing of

nodes along each stage. The static function Add_Stage_Nodes is used for

creating the nodes for each stage. This also uses grid rules for determining
which horizontal nodes should be connected with links. If restricted

airspaces are present, then nodes and links intersecting those airspaces will

not be included in the graph. An altitude restriction is attached to each

node and link for when this horizontal grid is used to generate a spatial

grid. This function also records the altitudes used for each stage so that

this vertical information can be given to the user in the Vert_<n>.dat
files.

Make_Spatiat_Grid_Frorn_Horizontal_Grid -- This makes a spatial grid

from a given horizontal grid and associated height rules. Nodes and links

in the spatial grid are generated according to the altitude restrictions and

height rules above each node and link in the horizontal grid.

Make_Matlab_Grid_File -- This produces the data files Node_<n>.dat and

Link_<n>.dat that describe the nodes and links in the horizontal grids for
each iteration.

4. Navigation aids -- The source code for this is contained in the files:

NavData.cpp and NavData.h.

• Location

The member data for this class describes the Position, name, and type (airport,

navigation aid, etc.).

• NavAidData

This class provides an interface to a database of Locations. It has two simple

methods for adding a location and retrieving a location by name.

5. Plane - The source code for this is contained in the files: Plane.cpp, Plane.h,

PlanePerfTest.cpp, and fp_grid.cpp.

• Maneuver

This class contains all of the information needed for a plane to perform a
maneuver and to record the results. The data members are: the
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climb/descent type (e.g. takeoff, steady, step), the velocity type - e.g. constant
TAS (true airspeed), constant mach, - average temperature, average mass, rate
of climb/descent, TAS, mach, wind speed along flight path, wind speed
perpendicular to flight path, starting position, ending position, starting
altitude, ending altitude, fuel flow rate for the maneuver, total cost of the
maneuver, and the percentage of maximum thrust used.

• ManeuverCons

This class is used to create a linked list of all maneuver objects destroyed.
Maneuvers are created and destroyed in such large numbers that it has its
own special resource handling.
• PlaneState

Objects in this class record the state of a plane at a given moment in time.
The data members are Position, pressure altitude, TAS (true airspeed), roach,
ground speed, rate of climb/descent, total fuel used, fuel available, total mass
of the plane, total time taken, and the total cost of the flight so far.
• ACPerformance

This class records all of the parameters associatedwith a given plane type that
govern its flight performance. All of the parameters needed for the BADA
performance model are recorded here.

• CostFunction

This encapsulates the cost function associatedwith a given plane and flight
plan. The two data members are the cost of fuel (in dollars per kilogram) and
the cost of time (in dollars per hour). The member function ComputeCost
will compute the cost for a given amount of time and fuel.

• PlaneType

The data members for this class are the name (e.g. B737),a simple string
description of the type (e.g. Boeing 737), and a copy of the ACPerformance
data.

• PlaneTypeList

This classprovides a list of PlaneTypes together with simple accessmethods
by name or by index in the list.

• ClimbLimitData

This class is used by the ClimbMassLimitTable class for its table entries. It
records the atmospheric density and the mass.

• ClimbMassLimitTable

For each flight plan a minimum rate of climb is specified. For that minimum
rate of climb and the given airplane, a table is constructed which has entries
for the altitudes of interest in this plane's range. For each altitude an object of
type ClimbLimitData is recorded. This object records the air density of this
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altitude and the maximum mass which this plane can lift at this altitude at

the required rate of chmb.

• PlaneData

This brings together all of the information associated with a given plane in a

flight plan. Its data members are the ACPerformance, PlaneState,

CostFunction, PlaneType, and ClimbMassLimitTable. This class also has a

number of member functions which calculate the plane's performance when

performing maneuvers:

Determine Se gmentMane uve rs
PerformSteadyAscent
PerformSteadyDescent

PerformStepAscent
PerformStepDescent
OptimizeStepAscent
OptimizeStepDescent

Depending on the climb/descent type specified,

DetermineSegmentManeuvers calls one of the

Perforrn<steady/step><Ascent/Descent> methods to perform that kind of

maneuver. These methods take a given flight segment between two

geometric positions and break it up into maneuvers of their type.

Methods performing step ascents or descents break the segment into a

variable length level portion and a remaining non-level steady portion --

an optimization method then searches for the optimal length of the level

portion. Steady climbs and descents are broken up into pieces that have

no more than 2,000 feet in altitude change. Ultimately all segments of any

climb/descent type are broken down into portions of steady maneuvers,

and these maneuvers are performed by the PerformSingleManeuver
method.

PerformSingleManeuver
OptimizeCostFunctionOverTAS
CalculateFuelFlow
TASFrom Thrust
GetMaxThrust
GetMinDescentThrust

PerformSingleManeuver first calculates weather information including

pressure, density, wind vectors, and temperature.

PerformSingleManeuver then uses OptimizeCostFunctionOverTAS in

order to find the optimal TAS for the given maneuver. Both

PerformSingleManeuver and OptimizeCostFunctionOverTAS use

CalculateFuelFlow to determine the fuel flow rate for a given maneuver

done at a given airspeed. CalculateFuelFlow is based on the BADA model

for doing its performance calculations.

• Miscellaneous functions i 'ude:

Check_Fuel_Flow
Check_Fuel_Flow_For_Plane
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Thesearetestfunctionsfor determiningif thefuel flow calculationsfor agivenplane
matchtheresultspublicizedin theBADA material.

6. Weather-- The source code for this is contained in the files: StandardDay.cpp,

StandardDay.h, Weather.cpp, Weather.h, WeatherService.cpp,
WeatherService.h, and WeatherUnits.h.

6a. Weather Units -- These classes are structured similarly to the Units library

classes discussed in the library classes section. These two classes are for

handling the atmospheric rate of change of temperature versus altitude.

Associated specific unit classes associated with these are FtPerRankine,

RankinePerFt, MPerKelvin, and KelvinPerM.

• DistPerTemp

• TempPerDist

6b. Physical Laws and StandardDay -- These classes are designed to handle

scientific manipulations involving atmospheric calculations.

• StandardDay

This is based on the ICAO standard day model. The class has a single data

member which is the geopotential altitude. It has methods for accessing the

temperature, pressure, density, speed of sound, and geometric altitude for a

given geopotential altitude. Additionally, the geopotential altitude may be set

in terms of pressure or geometric altitude.

• Miscellaneous Functions

Compu te_Speed_Of_Sound

This computes the speed of sound in air given the air temperature.

GasLaw_For_Dry_Air

This function calculates the relationship that holds in dry air between

pressure, temperature, and density. If the function is given two of these

quantities for arguments it will return the value of the remaining quantity.

GeopotentialToGeometric

Geometric ToGeopotential

These functions convert between geopotential and geometric altitude.

Geopotential altitude is the standard altitude used in standard day

calculations. Geopotential altitude is constructed so that gravitational
acceleration remains constant with altitude.

Check_Standard Day

This is a test function that produces a table of data that can be used to verify

that the standard day model is producing nominal results.

6c. Weather Data and Service

• WeatherData
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This class is used for recording the aviation weather information at a given

point. It has data members for the wind velocity vector (3 dimensional),

temperature, and geometric altitude.

• WeatherColumn

This class represents a vertical column of aviation weather data above a given

point on the earth. Its data member is a vector of WeatherData objects that

represent the WeatherData information at pressure altitudes from 0 to 48,000
feet in 2,000 foot increments.

• RawWeatherData

This class is used for recording the NOAA raw aviation weather data at a

given point. It has data member data for the geopotential altitude in meters,

the temperature in tenths of a kelvin, the east wind component in tenths of a

meter per second, and the north wind component in tenths of a meter per
second.

• RawWorldWeatherData

This class holds an entire NOAA world aviation weather forecast for a given

moment in time. Its data is represented in a 360 by 181 grid which is, not

surprisingly, on a 1 degree longitude by 1 degree latitude world grid. For a

given grid point on the earth the RawWeatherData is given at standard

pressure altitudes. The class has data members for the time of the forecast, a

vector of the millibar levels used for the weather data, and a single weather

vector for the world's weather data. The single vector representation is used

in order to make it as efficient as possible to read in the large weather data

directly for its data files without any manipulations.

• WeatherService

This is the main organizing class of the classes related to world weather data.
It holds the world weather data for the various times available. It has a

method for calculating, using linear interpolation in space and time, a

WeatherColumn for any given world position and time within the forecast

range.

7. Library Classes

7a. Units - Each of these classes have associated specific classes which are

generally too numerous to list. For example, associated with the general

Force class are specific classes for Newtons, Dynes, Poundals, OunceForce, and

PoundForce. The philosophy of these classes is to do all possible work in

terms of the general class so that all knowledge of the specific units involved

can be ignored. When data is initially read in, or when it is finally written

out, it is of course in terms of some specific units class such as Newtons.

However, no calculations can be performed with the specific classes, so they

are always immediately converted to the more general units class, in this case

Force. All of these classes store their value as a single double, so no extra

storage is required. In addition to these classes there are numerous
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overloadings of "*" and "/" to ease the handling of the interactions between

the general classes. For example, Pressure * Area will produce a Force, and

Force / Acceleration will produce a Mass.

• Acceleration

• Angle

• Area

• Density

• Distance

• Energy

• Force

• Mass

• MassPerTime

• Power

• Pressure

• Temperature

• TimeUnits

• VA

• Velocity

• Volume

• VV

• Weight

7b. Geometry -- The position classes are modeled in style after the units

classes, but they are of course somewhat more involved. The Position class is

the general class and represents the location of a point relative to the earth.

PositionLLA is a specific class that represents the location of a point as a

geodetic longitude, latitude, and altitude. PositionXYZ is another specific

class that represents the location of a point in terr, of a rectangular, cartesian

coordinate system.

• PositionLLA

• PositionXYZ

• Position

• Arc

The Arc class represents an arc as having a rotation center (rotation around

this vector can generate the arc), a starting position, an ending position, and a

rotation angle (the angle of rotation needed around the rotation center vector

to sweep out the entire arc).
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7C. LinearAlcebra -- These classes are light weight classes for doing basic linear

algebra manipulations. They are light weight in the sense that they require

no more storage space and no more execution time than equivalent hand-

coded C code would. The classes include overloading of basic mathematical

operations (e.g. "*') to make the object manipulations as natural as possible.

• Vector

• SquareMatrix

7d. Time -- These classes are for doing time keeping. UTCTime is for

handling UTC time information. Time is maintained with nanosecond

accuracy and requires only 64 bits of storage. The period of time which can be

handled is +/- 2A31 seconds (about 68 years) from the given epoch. The epoch

may be set to any appropriate time. The TimePeriod class is designed to be

consistent with the UTCTime class. For example, the difference between two

UTCTime objects is a TimePeriod, and a UTCTime incremented by a

TimePeriod is the expected UTCTime.

• TimePeriod

• UTCTime
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Appendix B--Preliminary Objects and Data Members

Address

datatype_tbd

datatype_tbd

datatype_tbd

datatype_tbd

datatype_tbd

datatype_tbd

datatype_tbd

datatype_tbd

datatype_tbd

datatype_tbd

datatype_tbd

Geographic_Location

Latitude_Longitude

datatype_tbd

datatype_tbd

Time

datatype_tbd

datatype_tbd

datatype_tbd

Time_Zone

Time

Time

Time

Fuel_Specification

datatype_tbd

datatype_tbd

ClosureSchedule

datatype_tbd

datatype_tbd

datatype_tbd

datatype_tbd

orginiza tion_name

contactname

telephone_number

alternate_telephone_number

fax_number

email_address

street

city
state

zip_code

country

hours

minutes

seconds

latitude_longitude

elevation

magnetic_variance_east_orwest

standard_time_offset_from_UTC

daylighttimestart_date

daylighttimeend_date

fuel_cost_rate

fuel_density

start_date

end_date

start_time

end_time

Runway_System
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datatype_tbd number of runways
Runway runway_data <array/list>

Runway
datatype_tbd
datatype_tbd
datatype_tbd
datatype_tbd

datatype_tbd

identifier

length

landing_aid_data <array/list>

aircraft_type_restrictions_data <array/list>

aircra ft _weigt_restriction

ClosureSchedule closure

Airport

datatype_tbd

datatype_tbd

datatype_tbd

datatype_tbd

datatype_tbd

datatype_tbd

datatype_tbd

datatype_tbd

datatype_tbd

datatype_tbd

name

airport_identifier

icao_airport_identifier

fir_uir_identifier

atc en route_center_identifier

atc_terminal_center_identifier

atc_tower_identifier

city
state

country

Geographic_Location geographic_location

Runway_System

Time_Zone

Fuel_Specification

ClosureSchedule

Closure_Schedule

Closure_Schedule

Address

Leg_Identifier

Airport

Airport

Time

Time

Aircraft_Identifier

datatype tbd

datatype_tbd

runway_system

time_zone

fuel_on_site_specification

curfew

closure

atc_tower_closure

airport_manager

origin

destination

departure_time

arrival_time

aircraft_registration_number

aircraft_type
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Flight_Schedule
datatype_tbd
datatype_tbd
Leg_Identifier
Aircraft_Identifier

Flight_Trip_Schedule
datatype_tbd

datatype_tbd
Flight_Schedule

flight_number
date

scheduled_leg_id <pointers/references>
scheduled_aircraft_id <pointers/references>

//flight sequence for one flight_number

flight_number

number of flights

flight_schedule_sequence <pointers/references>

Aircraft_Trip_Schedule // flight sequence for one aircraft_registration_number

datatype_tbd aircraft_registration_number

datatype_tbd number of filghts

Flight_Schedule flight_schedule_sequence <pointers/references>

Daily_Fleet_Flight_Trip_Schedule

datatype_tbd day_date

datatype_tbd number of flight_trips

Flight_Trip_Schedule flight_trip_schedule <pointers/references>

Daily_Fleet_Aircraft_Trip_Schedule

datatype_tbd day_date

datatype_tbd number of aircraft_trips

Aircraft_Trip_Schedule aircraft_trip_schedule <pointers/references>

Monthly_Fleet_Flight_Trip_Schedule

datatype_tbd month_date

datatype_tbd number of days

Daily_Fleet_Flight_Trip_Schedule daily_fleet_flight_trip_schedule<pntrs / refs>

Monthly_Fleet_Aircraft_Trip_Schedule

datatype_tbd month_date

datatype_tbd number of days

Daily_Fleet_Aircraft_Trip_Schedule daily_fleet_aircraft_trip_schedule<p/r>

Flight_Identifier

datatype_tbd

datatype_tbd

datatype_tbd

datatype_tbd

flight_number

date

origin

departure_time
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Speed
datatype_tbd
datatype_tbd
datatype tbd
datatype tbd

Wind

datatype tbd
datatype tbd

Weather
Wind

datatype tbd
datatype tbd
datatype tbd
datatype tbd
datatype tbd
datatype_tbd
datatype_tbd

roach
indicated

true

ground

speed

direction

wind

temperature

sky_cover

visibility

percipitation

turbulance

icing

tropopause_height

Latitude_Longitude

datatype_tbd latitude

datatype tbd longitude

Place_Bearing_Distance

datatype_tbd

Latitude_Longitude

datatype_tbd

datatype_tbd

Cursor_Coordinates

datatype_tbd

datatype_tbd

PositionType

Fix_Name_Type

Nay_Aid Type

Airport_Type

Latitude_Longitude_Type

PlaceBearingDistance_Type

Cursor_Coordinates

fix_name

latitude_longitude

bearing

distance

X

Y

//enum

=0

=1

=2

=3

=4

=5
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Position_Data

datatype_tbd
datatype_tbd
datatype_tbd
Latitude_Longitude

//union

fix_name

nav_aid

airport

latitude_longitude

Place_Bearing_Distance place_bearing_distance

Cursor_Coordinates cursor_coordinates

Position

Position_Type

Position_Data

Position_Type

Position

Time

datatype_tbd

Fuel_Report

Crossing_Report

datatype_tbd

Position_Report

Crossing_Report

Time

Position

Position

position_type

position_data

position_type Crossing_Report

reporting_point

time at reporting_point

altitude at reporting_point

crossing_report

fuel_remaining

crossing_report

expected_time at next_reporting_point

next_reporting_point

next_succeding_repor ting_point

Position_Weather_Report

Crossing_Report crossing_report

Weather weather_report

Departure_Station_Event_Projection

datatype_tbd

datatype_tbd

datatype_tbd

datatype_tbd

datatype_tbd

datatype_tbd

expected_time of gate_departure

expected_time of takeoff

expected_payload_at_gate_departure

expected_gross_takeoff_weight

expected_departure_gate_id

expected_departure_runway
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datatype_tbd
datatype_tbd
datatype_tbd
datatype_tbd
datatype_tbd

Departure_StationEvent_Report
datatype_tbd
datatype_tbd

datatype_tbd

Arrival_Station_Event_Projection
expected_time_of_touchdown

expected_time_of_gate_arrival
expected_fuel at gate_arrival
expected_arrival_gate id
expected_arrival_runway

station_id

scheduled_time_of_gate_departure
scheduled_time of takeoff

Departure_StationEvent_Projection current_dep_station event_projection
datatype_tbd time_of_gate_departure //out

datatype_tbd

datatype_tbd

datatype_tbd

datatype tbd

datatype_tbd

datatype_tbd

datatype_tbd

Arri va 1Sta tion Event_Repor t

datatype_tbd

datatype_tbd

datatype_tbd

Arrival_StationEvent_Projection

datatype_tbd

datatype_tbd

datatype_tbd

datatype_tbd

datatype_tbd

datatype_tbd

CrewPerson_Identifier

datatype_tbd name

datatype_tbd crew_position

datatype tbd equpment_experience

d a ta type tbd posi ti on_experience

datatype_tbd training_experience

datatype_tbd operational_qualifications

time of takeoff //off

planned_fuel at gate_departure

fuel_at_gate_departure

payload_at_gate_departure

gross_takeoff_weight

departure_gate id

departure_runway

station_id

scheduled_time of touchdown

scheduled_time of gate_arrival

current_arr_station_event projection

time of touchdown //on

time_of_gate_arrival //in

planned_fuel_at_gate_arrival

fuel at gatearrival

arrival gate_id

arrivalrunway
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Flight_Status
datatype_tbd
datatype_tbd
datatype_tbd

Flight_Record
Flight_Identifier
Aircraft Identifier

datatype_tbd
datatype_tbd
Flight_Status

Departure_Station_Event_Report
Arrival_Station_Event_Report
datatype_tbd
Crew_Person_Identifier
Crew_Person_Identifier

Position_Report
Fuel_Report

Position_Weather_Report

Flight_Trip_Record
datatype_tbd
datatype_tbd
Flight_Record
Flight_Record

flight_state //eg: sched, planned,active,cancel,end

flight_status //eg:nomal,impaired,emergency

lastevent_reported //eg:skd,pln,etd,eto,out,off, cnl,pre

flight_id

aircraft_id

leg_number

flight_plan_number

current_flight staus

departurestation_event_report <ptr/ref>

arrival_station_event_report <ptr/ref>

arrival_alternate_airport

flight_deck_crew_roster <ptrs/refs>

cabin_crewroster <pointers/references>

position_report_history <array/list>

fuel_report_history <array/list>

position_weather_repor t_history<p trs / refs>

//flight record sequence for one flight_number

flight_number

number of flights

current_flight_record <ptr/ref>

flight_record_sequence <ptrs/refs>

Aircraft_Trip_Record //fit record sequence for one aircraft_registration_number

datatype_tbd

datatype_tbd

Flight_Record

Flight_Record

Flight_Plan_Identifier

Flight_Identifier

datatype_tbd

aircraft_registration_number

number of filghts

current_flight_record <ptr/ref>

flight_record_sequence <ptrs/refs>

flight_id

flight_plan_number
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Flight_Point_Status
Position
Position
Time

datatype_tbd

datatype_tbd

name

position

time

altitude

weight

Flight_Planning_Parameters

Flight_Plan_Identifier

Flight_Schedule

Flight_Point_Status

Flight_Point_Status

datatype_tbd

datatype tbd

datatype tbd

datatype_tbd

datatype_tbd

datatype_tbd

datatype_tbd

datatype_tbd

datatype_ tbd

datatype_tbd

datatype_tbd

datatype_tbd

Flight_Segment

FlightPoint_Status

FlightPoint_Status

datatype tbd

datatype_tbd

datatype_tbd

Wind

datatype_tbd

datatype_tbd

datatype_tbd

datatype_tbd

//eg: latitude_longitude

//eg: sced, actual, latest arrival time

//eg: actual, max takeoff or landing weight

flight_plan_id

current_flight_schedule

flight_start_point_status //eg: replan

flight_end_point_status //eg: divert

arrival_alternate airport_l

arrival_alternate airport_2

takeoff_alternateairport

optimization_mode //eg: rain time,fuel,cost;on-time

payload

holding_timeatdestination

additional_fuel

additional_enroute_burn_fuel

additional_taxi_burn_fuel

cruise_speed regime

minimum_equipmemt list

restrictions

start_pointstatus

end_point_status

true_air_speed

ground_speed

heading

average_windvelocity_direction

average_headwind_component

forecast_tropopause_height

turbulance_index

teperature_deviation_from_standard
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Flight_Plan_Data
Flight_Plan_Identifier
Time

datatype_tbd

datatype_tbd

Flight_Planning_Parameters

Flight_Segment

datatype_tbd

flight_plan_id

time_of_generation

date_of_generation

originator

flight_plan_generation_parameters <ptr/ref>

flight_segment_sequence <array/list>

alternate_airport
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